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Abstract 

The long-term goal of our field is the creation and understanding of intelligence. Productive 
research in AI, both practical and theoretical, benefits from a notion of intelligence that is precise 
enough to allow the cumulative development of robust systems and general results. The concept of 
rational agency has long been considered a leading candidate to fulfill this role. This paper outlines 
a gradual evolution in the formal conception of rationality that brings it closer to our informal 
conception of intelligence and simultaneously reduces the gap between theory and practice. Some 
directions for future research are indicated. @ 1997 Elsevier Science B.V. 
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1. Artificial intelligence 

AI is a field whose ultimate goal has often been somewhat ill-defined and subject to 

dispute. Some researchers aim to emulate human cognition, others aim at the creation 
of intelli,gence without concern for human characteristics, and still others aim to create 
useful artifacts without concern for abstract notions of intelligence. 

This variety is not necessarily a bad thing, since each approach uncovers new ideas 
and provides fertilization to the others. But one can argue that, since philosophers 
abhor a definitional vacuum, many of the damaging and ill-informed debates about the 

feasibility of AI have been about definitions of AI to which we as AI researchers do 
not subscribe. 

My own motivation for studying AI is to create and understand intelligence as a 
general property of systems, rather than as a specific attribute of humans. I believe this 
to be an appropriate goal for the field as a whole, and it certainly includes the creation 
of useful artifacts-both as a spin-off and as a focus and driving force for technological 
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development. The difficulty with this “creation of intelligence” view, however, is that 
it presupposes that we have some productive notion of what intelligence is. Cognitive 

scientists can say “Look, my model correctly predicted this experimental observation 
of human cognition”, and artifact developers can say “Look, my system is saving 
lives/megabucks”, but few of us are happy with papers saying “Look, my system is 
intelligent”. This difficulty is compounded further by the need for theoretical scaffolding 
to allow us to design complex systems with confidence and to build on the results 
of others. “Intelligent” must be given a definition that can be related directly to the 

system’s input, structure, and output. Such a definition must also be general. Otherwise, 
AI subsides into a smorgasbord of fields-intelligence as chess playing, intelligence as 

vehicle control, intelligence as medical diagnosis. 
In this paper, I shall outline the development of such definitions over the history 

of AI and related disciplines. I shall examine each definition as a predicate P that 

can be applied, supposedly, to characterize systems that are intelligent. For each P, I 
shall discuss whether the statement “Look, my system is P” is interesting and at least 
sometimes true, and the sort of research and technological development to which the 

study of P-systems leads. 
I shall begin with the idea that intelligence is strongly related to the capacity for 

successful behaviour-the so-called “agent-based” view of AI. The candidates for formal 
definitions of intelligence are as follows: 

l PI : Pelfect rationality, or the capacity to generate maximally successful behaviour 

given the available information. 
l P2: Calculative rationality, or the in-principle capacity to compute the perfectly 

rational decision given the initially available information. 

l P3: Metakvel rationality, or the capacity to select the optimal combination of 
computation-sequence-plus-action, under the constraint that the action must be 

selected by the computation. 
l P4: Bounded optimality, or the capacity to generate maximally successful behaviour 

given the available information and computational resources. 
All four definitions will be fleshed out in detail, and I will describe some results that 
have been obtained so far along these lines. Then I will describe ongoing and future 
work under the headings of calculative rationality and bounded optimality. 

I shall be arguing that, of these candidates, bounded optimality comes closest to 
meeting the needs of AI research. There is always a danger, in this sort of claim, 
that its acceptance can lead to “premature mathematization”, a condition characterized 
by increasingly technical results that have increasingly little to do with the original 

problem-in the case of AI, the problem of creating intelligence. Is research on bounded 
optimality a suitable stand-in for research on intelligence? I hope to show that P4, 
bounded optimality, is more suitable than PI through P3 because it is a real problem 
with real and desirable solutions, and also because it satisfies some essential intuitions 
about the nature of intelligence. Some important questions about intelligence can only be 
formulated and answered within the framework of bounded optimality or some relative 
thereof. Only time will tell, however, whether bounded optimality research, perhaps with 
additional refinements, can generate enough theoretical scaffolding to support significant 
practical progress in AI. 
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2. Agents 

Until fairly recently, it was common to define AI as the computational study of 
“mental faculties” or “intelligent systems”, catalogue various kinds, and leave it at 
that. This does not provide much guidance. Instead, one can define AI as the prob- 
lem of designing systems that do the right thing. Now we just need a definition for 
“right”. 

This approach involves considering the intelligent entity as an agent, that is to say 
a system that senses its environment and acts upon it. Formally speaking, an agent is 
defined by the mapping from percept sequences to actions that the agent instantiates. 

Let 0 be the set of percepts that the agent can observe at any instant, and A be the 
set of possible actions the agent can carry out in the external world (including the 
action of doing nothing). Thus the agent function f : 0* -+ A defines how an agent 
behaves under all circumstances. What counts in the first instance is what the agent does, 

not necessarily what it thinks, or even whether it thinks at all. This initial refusal to 
consider -further constraints on the internal workings of the agent (such as that it should 

reason logically, for example) helps in three ways: first, it allows us to view such 
“cognitive faculties” as planning and reasoning as occurring in the service of finding 
the right thing to do; second, it encompasses rather than excludes the position that 
systems can do the right thing without such cognitive faculties [ 1,4] ; third, it allows 
more freedom to consider various specifications, boundaries, and interconnections of 

subsystems. 
The agent-based view of AI has moved quickly from workshops on “situatedness” 

and “embeddedness” to mainstream textbooks [ 10,391 and buzzwords in Newsweek. 

Rational agents, loosely speaking, are agents whose actions make sense from the point 

of view of the information possessed by the agent and its goals (or the task for which 

it was designed). Rationality is a property of actions and does not specify-although 
it does c:onstrain-the process by which the actions are selected. This was a point 
emphasized by Simon [ 461, who coined the terms substantive rationality and proce- 

dural rationality to describe the difference between th& question of what decision to 
make and the question of how to make it. That Rod Brooks’ 1991 Computers and 
Thought lecture was titled “Intelligence without Reason” (see also [5] ) emphasizes 
the fact that reasoning is (perhaps) a derived property of agents that might, or might 
not, be a good implementation scheme to achieve rational behaviour. Justifying the 

cognitive structures that many AI researchers take for granted is not an easy prob- 
lem. 

One other consequence of the agent-based view of intelligence is that it opens AI up 
to competition from other fields that have traditionally looked on the embedded agent 
as a natural topic of study. Control theory is foremost among these, but evolutionary 
programming and indeed evolutionary biology itself also have ideas to contribute.* 

‘1 view lhis as a very positive development. AI is a field defined by its problems, not its methods. Its 
principal insights-among them the learning, use, and compilation of explicit knowledge in the service of 

decision making-can certainly withstand the influx of new methods from other fields. This is especially true 
when other, fields are simultaneously embracing the insights derived within AI. 
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Fig. 1. The agent receives percepts from the environment and generates a behaviour which in turn causes the 

environment to generate a state history. The performance measure evaluates the state history to arrive at the 

value of the agent. 

The prevalence of the agent view has also helped the field move towards solving real 
problems, avoiding what Brooks calls the “hallucination” problem that arises when the 
fragility of a subsystem is masked by having an intelligent human providing input to it 

and interpreting its outputs. 

3. Perfect rationality 

Perfect rationality constrains an agent’s actions to provide the maximum expectation 
of success given the information available. We can expand this notion as follows (see 
Fig. 1) . The fundamental inputs to the definition are the environment class E in which 
the agent is to operate and the performance measure U which evaluates the sequence of 

states through which the agent drives the actual environment. Let V( f, E, U) denote the 
expected value according to U obtained by an agent function f in environment class E, 

where (for now) we will assume a probability distribution over elements of E. Then a 
perfectly rational agent is defined by an agent function fopt such that 

fopt = argmaxf V( f, E, W . 

This is just a fancy way of saying that the best agent does the best it can. The point 
is that perfectly rational behaviour is a well-defined function of E and U, which I 
will call the tusk environment. The problem of computing this function is addressed 
below. 

The theoretical role of perfect rationality within AI is well-described by Newell’s 
paper on the Knowledge Level [35]. Knowledge-level analysis of AI systems relies 
on an assumption of perfect rationality. It can be used to establish an upper bound on 
the performance of any possible system, by establishing what a perfectly rational agent 
would do given the same knowledge. 



S.J. Russell/Artijicial Intelligence 94 (1997) 57-77 61 

Although the knowledge that a perfectly rational agent has determines the actions that 
it will take given its goals, the question of where the knowledge comes from is not well 
understood. That is, we need to understand rational learning as well as rational action. 
In the logical view of rationality, learning has received almost no attention-indeed, 
Newell’s analysis precludes learning at the knowledge level. In the decision-theoretic 
view, Bayesian updating provides a model for rational learning, but this pushes the 
question back to the prior [6]. The question of rational priors, p~ticul~ly for expressive 
representation languages, remains unsettled. 

Another aspect of perfect rationality that is lacking is the development of a suitable 
body of techniques for the specification of utility functions. In economics, many results 
have been derived on the decomposition of overall utility into attributes that can be 
combined in various ways [ 261, yet such methods have made few inroads into AI (but 
see [2,50] ). We also have little idea how to specify utility over time, and although 
the question has been raised often, we do not have a satisfactory understanding of the 
relationship between goals and utility. 

The good thing about perfectly rational agents is that if you have one handy, you prefer 
it to any other agent. Furthermore, if you are an economist you can prove nice results 
about economies populate by them; and if you want to design dis~ibut~ intelligent 
systems, assuming perfect rationality on the part of each agent makes the design of 
the interaction mechanisms much easier. The bad thing is that the theory of perfect 
rationality does not provide for the analysis of the internal design of the agent: one 
perfectly rational agent is as good as another. The really bad thing, as pointed out by 
Simon, is that perfectly rational agents do not exist. Physical m~h~isms take time 
to process information and select actions, hence the behaviour of real agents cannot 
immediately reflect changes in the environment and will generally be suboptimal. 

4. Cakulati7e ration~ity 

Before discussing calculative rationality, it is necessary to introduce a distinction 
between the agent function and the agent program. In AI, an agent is implemented as 
a program, which I shall call 1, running on a machine, which I shall call M. An agent 
program receives as input the current percept, but also has internal state that reflects, in 
some form, the previous percepts. It outputs actions when they have been selected. From 
the outside, the behaviour of the agent consists of the selected actions interspersed with 
inaction (or whatever default actions the machine generates). 

Calculative rationality is displayed by programs that, if executed infinitely fast, would 
result in perfectly rational behaviour. Unlike perfect rationality, calculative rationality is 
a requirement that can be fulfills by many real programs. Also unlike perfect rationality, 
calculative rationality is not necessarily a desirable property. For example, a calculatively 
rational chess program will choose the “right” move, but may take 16’ times too long 
to do so. 

The pursuit of calculative rationality has nonetheless been the main activity of theo- 
retically well-founded research in AI. In the early stages of the field, it was impo~~t to 
concentrate on “epistemological adequacy” before “heuristic adequacy”-that is, capa- 
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bility in principle rather than in practice. 3 Calculative rationality has been the mainstay 
of both the logical and the decision-theoretic traditions. In the logical tradition, the 
performance measure accepts behaviours that achieve the specified goal in all cases and 
rejects any others. Thus Newell [ 351 defines rational actions as those that are guaranteed 

to achieve one of the agent’s goals. Logical planning systems, such as theorem-provers 
using situation calculus, satisfy the conditions of calculative rationality under this defi- 
nition. In the decision-theoretic tradition, the design of calculatively rational agents has 
largely gone on outside AI-for example, in stochastic optimal control theory [27]. 

Representations have usually been very impoverished (state-based rather than senten- 
tial) and solvable problems have been either very small or very specialized. Within AI, 

the development of probabilistic networks or belief networks has opened up many new 

possibilities for agent design, providing in many cases an exponential reduction in rep- 
resentational complexity. Systems based on influence diagrams (probabilistic networks 
with action and value nodes added) satisfy the decision-theoretic version of calculative 
rationality. 

In practice, neither the logical nor the decision-theoretic traditions can avoid the 
intractability of the decision problems posed by the requirement of calculative rationality. 
One response is to rule out sources of exponential complexity in the representations and 
reasoning tasks addressed, so that calculative and perfect rationality coincide-at least, if 

we ignore the little matter of polynomial-time computation. This position was expounded 

in two fascinating Computers and Thought lectures given by Hector Levesque in 1985 
[ 30,3 l] and by Henry Kautz in 1989. The accompanying research results on tractable 
sublanguages are perhaps best seen as indications of where complexity may be an 

issue rather than as a solution to the problem of complexity. The idea of restricting 
expressiveness was strongly opposed by Doyle and Patil [ 141, who pointed out that 
it also restricts the applicability of the representation and inference services designed 

under such constraints. 4 
In the area of distributed AI, the system designer has control over that part of each 

agent’s environment that involves negotiations with other agents. Thus, one possible way 
to control complexity is to constrain the negotiation problem so that optimal decisions 

can be made easily. For example, the Clarke Tax mechanism can be used to ensure 
that the best policy for each agent is simply to state its preferences truthfully [ 151. Of 

course, this approach does not necessarily result in optimal behaviour by the ensemble 
of agents; nor does it solve the problem of complexity in interacting with the rest of the 

environment. 
The most common response to complexity has been to use various speedup techniques 

and approximations in the hope of getting reasonable behaviour. AI has developed a very 
powerful armoury of methods for reducing complexity, including the decomposition of 
state representations into sentential form; sparse representations of environment models 

3 Perhaps not coincidentally, this decision was taken before the question of computational intractability was 

properly understood in computer science. 
4 Doyle and Patil propose instead the idea of “rational management of inference”. Representation systems 

“should be designed to offer a broad mix of services varying in cost and quality” and should take into account 

“the costs and benefits [of computations] as perceived by the system’s user”. That is, they suggest a solution 
based on rational metareasoning, as discussed in Section 5. 



(as in STRIPS operators); solution decomposition methods such as partial-order plan- 
ning and abstraction; approximate, parameterized representations of value functions for 
reinforcement learning; compilation (chunking, macro-operators, EBL, etc.); and the 
application of metalevel control. Although some of these methods can retain guarantees 
of optimality and are effective for moderately large problems that are well structured, it 
is inevitable that intelligent agents will be unable to act rationally in all circumstances. 
This observation has been a commonplace since the very beginning of AI. Yet systems 
that select suboptimal actions fall outside calculative rationality per se, and we need a 

better theory to understand them. 

5. Metalrevel rationality 

Metalevel ration~ity, also called Type II rationaIity by I.J. Good [ IS], is based on the 
idea of finding an optimal tradeoff between computational costs and decision quality. 
Although Good never made his concept of Type II rationality very precise-he defines 
it as “the maximization of expected utility taking into account deliberation costs-it 
is clear that the aim was to take advantage of some sort of ~eta~~e~ architecture to 

implement this tradeoff. Metalevel architecture is a design philosophy for intelligent 
agents that divides the agent into two (or more) notional parts. The object level carries 
out computations concerned with the application domain-for example, projecting the 

results of physical actions, computing the utility of certain states, and so on. The 
metalevel is a second decision-making process whose application domain consists of 
the object-level computations themselves and the computational objects and states that 

they affect. Met~e~oning has a long history in AI, going back at least to the early 
1970s (see [ 421 for historical details). One can also view selective search methods 
and pruning strategies as embodying metalevel expertise concerning the desirability of 
pursuing particular object-level search operations. 

The theory of rationaE metareasoning formalizes the intuition that the metalevel can 
“do the right thinking.” The basic idea is that object-level computations are actions with 

costs (the passage of time) and benefits (improvements in decision quality). A rational 
mctalevel selects computations according to their expected utility. Rational metareason- 
ing has as a precursor the theory of information value [ 23]-the notion that one can 
calculate the decision-theoretic value of acquiring an additional piece of information by 

simulating the decision process that would be followed given each possible outcome of 
the information request, thereby estimating the expected improvement in decision quality 

averaged lover those outcomes. The application to computational processes, by analogy 
to information-gathering, seems to have originated with Matheson [ 321. In AI, Horvitz 
[ 20,211, Breese and Fehling [ 31, and Russell and Wefald [ 4 l-431 all showed how 
the idea of value of computation could solve the basic problems of real-time decision 

making. 
The work done with Eric Wefald looked in particular at search algorithms, in which the 

object-level computations extend projections of the results of various courses of actions 
further into the future. For example, in chess programs, each object-level computation 
expands a leaf node of the game tree. The metalevel problem is then to select nodes 
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for expansion and to terminate search at the appropriate point. The principal problem 
with metareasoning in such systems is that the local effects of the computations do not 
directly translate into improved decisions, because there is also a complex process of 
propagating the local effects at the leaf back to the root and the move choice. It turns 
out that a general formula for the value of compu~tion can be found in terms of the 
“local effects” and the “propagation function”, . such that the formula can be instantiated 
for any particular object-level system (such as minimax propagation), compiled, and 
executed efficiently at runtime. This method was implemented for two-player games, 
two-player games with chance nodes, and single-agent search. In each case, the same 
general metareasoning scheme resulted in efficiency improvements of roughly an order 
of magnitude over traditional, highly-engineered algorithms. 

Another general class of met~~soning problems arises with o~ytime [ 111 or~~i~~e 
[20] algorithms, which are algorithms designed to return results whose quality varies 
with the amount of time allocated to computation. The simplest type of metareasoning 
trades off the expected increase in decision quality for a single algorithm, as measured 
by a performance projile, against the cost of time [45]. A greedy termination condition 
is optimal if the second derivative of the performance profile is negative. More complex 
problems arise if one wishes to build complex real-time systems from anytime compo- 
nents. First, one has to ensure the inte~rffptibizi~ of the composed system-that is, to 
ensure that the system as a whole can respond robustly to immediate demands for output. 
The solution is to interieave the execution of all the components, allocating time to each 
component so that the total time for each complete iterative improvement cycle of the 
system doubles at each iteration. In this way, we can construct a complex system that 
can handle arbitrary and unexpected real-time demands exactly as if it knew the exact 
time available in advance, with just a small ( < 4) constant factor penalty in speed [ 441. 
Second, one has to allocate the available computation optimalIy among the components 
to maximize the total output quality. Although this is NP-hard for the general case, it 
can be solved in time linear in program size when the call graph of the components is 
tree-structured [ 521. Although these results are derived in the relatively clean context 
of anytime algorithms with well-defined performance profiles, there is reason to expect 
that the general problem of robust real-time decision-making in complex systems can 
be handled in practice. 

Over the last few years, an interesting debate has emerged conceding the nature 
of met~nowl~ge and met~e~oning. TEBRESIAS [ 91 established the idea that explicit, 
domain-specific metaknowledge was an important aspect of expert system creation. Thus, 
metaknowledge is a sort of “extra” domain knowledge, over and above the object-level 
domain knowledge, that one has to add to an AI system to get it to work well. On 
the other hand, in the work on rational metareasoning described above, it is clear that 
the metatheory describing the effects of compartations is domain-independent [ 17,421. 
In principle, no additional domain knowledge is needed to assess the benefits of a 
computation. In practice, met~easoning from first principles can be very expensive, 
To avoid this, the results of metalevel analysis for particular domains can be compiled 
into domain-specific metaknowledge, or such knowledge can be learned directly from 
experience (see [42, Chapter 61 and [ 341). This view of emerging “computational 
expertise” leads to a fundamental insight into intelligence-namely, that there is an 



S.J. Russell/Art@cial Intelligence 94 (1997) 57-77 65 

interesting sense in which algorithms are not a necessary part of AI systems. Instead, 
one can imagine a general process of rationally guided computation interacting with 
properties of the environment to produce more and more efficient decision making. To 
my mind., this way of thinking finesses one major puzzle of AI: if what is required for 
AI is incredibly devious and superbly efficient algorithms far surpassing the current best 
efforts of computer scientists, how did evolution (and how will machine learning) ever 
get there? 

Significant open problems remain in the area of rational metareasoning. One obvi- 

ous difficulty is that almost all systems to date have adopted a myopic strategy-a 
greedy, depth-one search at the metalevel. Obviously, the problem of optimal selection 

of computation sequences is at least as intractable as the underlying object-level prob- 
lem. Nonetheless, sequences must be considered because in some cases the value of a 
computation may not be apparent as an improvement in decision quality until further 

computations have been done. This suggests that techniques from reinforcement learn- 
ing could be effective, especially as the “reward function” for computation-that is, the 
improvement in decision quality-is easily available to the metalevel post hoc. Other 
possible areas for research include the creation of effective metalevel controllers for 
more complex systems such as abstraction hierarchy planners, hybrid architectures, and 

so on. 
Although rational me&reasoning seems to be a useful tool in coping with complexity, 

the concept of metalevel rationality as a formal framework for resource-bounded agents 

does not seem to hold water. The reason is that, since metareasoning is expensive, it 
cannot be carried out optimally. The history of object-level rationality has repeated it- 

self at the metalevel: perfect rationality at the metalevel is unattainable and calculative 
rationality at the metalevel is useless. Therefore, a time/optimality tradeoff has to be 
made for metalevel computations, as for example with the myopic approximation men- 
tioned above. Within the framework of metalevel rationality, however, there is no way 
to identify the appropriate tradeoff of time for metalevel decision quality. Any attempt 
to do so via a metametalevel simply results in a conceptual regress. Furthermore, it is 
entirely possible that in some environments, the most effective agent design will do no 
metareasoning at all, but will simply respond to circumstances. These considerations 

suggest that the right approach is to step outside the agent, as it were; to refrain from 
micromanaging the individual decisions made by the agent. This is the approach taken 
in bounded optimality. 

6. Bounded optimality 

The difficulties with perfect rationality and metalevel rationality arise from the impo- 
sition of constraints on things (actions, computations) that the agent designer does not 
directly control. Specifying that actions or computations be rational is of no use if no 
real agems can fulfill the specification. The designer controls the program. In [40], the 

notion of feasibility for a given machine is introduced to describe the set of all agent 
functions that can be implemented by some agent program running on that machine. 
This is somewhat analogous to the idea of computability, but is much stricter because it 
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relates the operation of a program on a formal machine model with finite speed to the 
actual temporal behaviour generated by the agent. 

Given this view, one is led i~ediately to the idea that optimal feasible behaviour is 
an interesting notion, and to the idea of finding the program that generates it. Suppose 
we define Agent( 1, M) to be the agent function implemented by the program I running 
on machine M. Then the bounded optimal program lopt is defined by 

1 *Pt = afgmqECM VtAgent(l,~),E,V), 

where L:M is the finite set of all programs that can be run on M. This is P4, bounded 
optimality. 

In AI, the idea of bounded optimality floated around among several discussion groups 
interested in the general topic of resource-bounded rationality in the late 198Os, par- 
ticularly those at Rockwell (organized by Michael Fehling) and Stanford (organized 
by Michael Bratman). The term “bounded optimality” seems to have been originated 
by Eric Horvitz [21], who defined it informally as “the optimization of computa- 
tional utility given a set of assumptions about expected problems and constraints on 
resources”. 

Similar ideas have also surfaced recently in game theory, where there has been a 
shift from consideration of optimal decisions in games to a consideration of optimal 
decision-making programs. This leads to different results because it limits the ability 
of each agent to do unlimited simulation of the other, who is also doing unlimit~ 
simulation of the first, and so on. Even the requirement of computability makes a 
significant difference [33]. Bounds on the complexity of players have also become 
a topic of intense interest. Papadimitriou and Yannakakis [36] have shown that a 
collaborative equilib~um exists for the iterated Prisoner’s Dilemma game if each agent 
is a finite automaton with a number of states that is less than exponential in the number 
of rounds. This is essentially a bounded optimality result, where the bound is on space 
rather than speed of computation. 

Philosophy has also seen a gradual evolution in the definition of rationality. There 
has been a shift from consideration of act utilitarianism-the rationality of individual 
acts-to rule utilitun’anism, or the rationality of general policies for acting. The require- 
ment that policies be feasible for limited agents was discussed extensively by Cherniak 
[ 81 and Harman [ 191. A philosophical proposal generally consistent with the notion 
of bounded optimality can be found in the “Moral First Aid Manual” [ 131. Dennett 
explicitly discusses the idea of reaching an optimum within the space of feasible deci- 
sion procedures, using as an example the Ph.D. admissions procedure of a philosophy 
department. He points out that the bounded optimal admissions procedure may be some- 
what messy and may have no obvious hallmark of “optimality”-in fact, the admissions 
com~tt~ may continue to tinker with it since bounded optimal systems may have no 
way to recognize their own bounded optimality. 

In work with Devika Subramanian, the general idea of bounded optimality has been 
placed in a formal setting so that one can begin to derive rigorous results on bounded 
optimal programs. This involves setting up completely specified rel~onships among 
agents, programs, machines, environments, and time. We found this to be a very valu- 
able exercise in itself. For example, the “folk AI” notions of “real-time environments” 
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and ‘deadlines” ended up with definitions rather different than those we had initially 
imagined. From this foundation, a very simple machine architecture was investigated in 
which the program consists of decision procedures of fixed execution time and decision 
quality. In a “stochastic deadline” environment, it turns out that the utility attained by 
running several procedures in sequence until interrupted is often higher than that attain- 
able by any single decision procedure. That is, it is often better first to prepare a “quick 
and dirty” answer before emb~king on more involved calculations in case the latter do 
not finish in time. 

The interesting aspect of these results, beyond their value as a demonstration of non- 
trivial proofs of bounded optimality, is that they exhibit in a simple way what I believe 
to be a major feature of bounded optimal agents: the fact that the pressure towards op- 
timality within a finite machine results in more complex program structures. Intuitively, 
efficient d~ision-~ng in a complex environment requires a software architecture that 
offers a wide variety of possible computational options, so that in most situations the 
agent has at least some computations available that provide a significant increase in 
decision quality. 

One possible objection to the basic model of bounded optimality outlined above is 
that solutions are not robust with respect to small v~iations in the environment or the 
machine. This in turn would lead to difficulties in analysing complex system designs. 
Theoretical computer science faced the same problem in describing the running time of 
algorithms, because counting steps and describing instruction sets exactly gives the same 
kind of fragile results on optimal algorithms. The 00 notation was developed to deal 
with this and provides a much more robust way to describe complexity that is indepen- 
dent of machine speeds and implementation details. This robustness is also essential in 
allowing complexity results to develop cumulatively. In [ 401, the corresponding notion 
is asymptotic bounded optimality (ABO) . As with classical complexity, we can define 
both average-case and worst-case ABO, where “case” here means the environment. For 
example, worst-case ABO is defined as follows: 

Worst-case asymptotic bounded optimality. An agent program 1 is timewise (or space- 
wise) worst-case ABO in E on M iff 

3k,no Yl’,n n > no + V*(Agent(l, kM), E,U,n) 2 V*(Agent(l’,M), E, U,n) 

where kM denotes a version of M speeded up by a factor k (or with k times more 
memory) and V*( f, E, V, n) is the minimum value of V( f, E, U) for all E in E of 
complexity n. 

In English, this means that the program is basically along the right lines if it just 
needs a faster (larger) machine to have worst-case behaviour as good as that of any 
other program in all environments. 

Another possible objection to the idea of bounded optimality is that it simply shifts 
the intractable computational burden of metalevel rationality from the agent’s metalevel 
to the designer’s object level. Surely, one might argue, the designer now has to solve 
offline all the metalevel opti~zation problems that were intractable when online. This 
argument is not without merit-indeed, it would be surprising if the agent design prob- 
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lem turns out to be easy. There is however, a significant difference between the two 
problems, in that the agent designer is presumably creating an agent for an entire class 
of environments, whereas the putative metalevel agent is working in a specific environ- 
ment. That this can make the problem easier for the designer can be seen by considering 
the example of sorting algorithms. It may be very difficult indeed to sort a list of a 

trillion elements, but it is relatively easy to design an asymptotically optimal algorithm 
for sorting. In fact, the difficulties of the two tasks are unrelated. The unrelatedness 
would still hold for BO as well as ABO design, but the ABO definitions make it a good 

deal clearer. 
It can be shown easily that worst-case ABO is a generalization of asymptotically 

optimal algorithms, simply by constructing a “classical environment” in which classical 
algorithms operate and in which the utility of the algorithm’s behaviour is a decreasing 
positive function of runtime if the output is correct and zero otherwise. Agents in 
more general environments may need to trade off output quality for time, generate 

multiple outputs over time, and so on. As an illustration of how ABO is a useful 
abstraction, one can show that under certain restrictions one can construct universal 

ABO programs that are ABO for any time variation in the utility function, using the 
doubling construction from [ 441. Further directions for bounded optimality research are 

discussed below. 

7. What is to he done? 

This section describes some of the research activities that will, I hope, help to turn 
bounded optimality into a creative tool for AI system design. First, however, I shall 

describe work on calculatively rational systems that needs to be done in order to enrich 

the space of agent programs. 

7.1. Components for calculative rationality 

As mentioned above, the correct design for a rational agent depends on the task 

environment-the “physical” environment and the performance measure on environment 
histories. It is possible to define some basic properties of task environments that, together 
with the complexity of the problem, lead to identifiable requirements on the correspond- 
ing rational agent designs [ 39, Chapter 21. The principal properties are whether the 
environment is fully observable or partially observable, whether it is deterministic or 
stochastic, whether it is static (i.e., does not change except when the agent acts) or dy- 
namic, and whether it is discrete or continuous. Although crude, these distinctions serve 
to lay out an agenda for basic research in AI. By analysing and solving each subcase and 
producing calculatively rational mechanisms with the required properties, theoreticians 
can produce the AI equivalent of bricks, beams, and mortar with which AI architects 
can build the equivalent of cathedrals. Unfortunately, many of the basic components 
are currently missing. Others are so fragile and non-scalable as to be barely able to 
support their own weight. This presents many opportunities for research of far-reaching 
impact. 
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The logicist tradition of goal-based agent design, based on the creation and execution 
of guaranteed plans, is firmly anchored in fully observable, deterministic, static, and 
discrete task environments. (Furthermore, tasks are usually specified as logically defined 

goals rather than general utility functions.) This means that agents need keep no internal 
state and can even execute plans without the use of perception. 

The theory of optimal action in stochastic, partially observable environments goes 
under the heading of POMDPs (Partially Observable Markov Decision Problems), a 
class of problems first addressed in the work of Sondik [47] but almost completely 

unknown in AI until recently [ 71. Similarly, very little work of a fundamental nature 

has been done in AI on dynamic environments, which require real-time decision making, 
or on continuous environments, which have been largely the province of geometry-based 
robotics. !Since most real-world applications are partially observable, nondeterministic, 
dynamic, and continuous, the lack of emphasis is somewhat surprising. 

There are, however, several new bricks under construction. For example, dynamic 
probabilistic networks (DPNs) [ 121 provide a mechanism to maintain beliefs about the 
current state of a dynamic, partially observable, nondeterministic environment, and to 
project forward the effects of actions. Also, the rapid improvement in the speed and 
accuracy ‘of computer vision systems has made interfacing with continuous physical 
environments more practical. In particular, the application of Kalman filtering [24], a 
widely used technique in control theory, allows robust and efficient tracking of moving 

objects; DPNs extend Kalman filtering to allow more general representations of world 
state. Reinforcement learning, together with inductive learning methods for continuous 
function representations such as neural networks, allow learning from delayed rewards 
in continuous, nondeterministic environments. Recently, Parr and Russell [ 371, among 
others, have had some success in applying reinforcement learning to partially observable 
environments. Finally, learning methods for static and dynamic probabilistic networks 
with hidden variables (i.e., for partially observable environments) may make it possible 

to acquire the necessary environment models [ 29,381. 
The Bayesian Automated Taxi (a.k.a. BATmobile) project [ 161 is an attempt to 

combine all these new bricks to solve an interesting application problem, namely driving 

a car on a freeway. Technically, this can be viewed as a POMDP because the environment 
contains relevant variables (such as whether or not the Volvo on your left is intending 

to change lanes to the right) that are not observable, and because the behaviour of other 
vehicles and the effects of one’s own actions are not exactly predictable. In a POMDP, 
the optimal decision depends on the joint probability distribution over the entire set of 
state variables. It turns out that a combination of real-time vision algorithms, Kalman 
filtering, and dynamic probabilistic networks can maintain the required distribution when 
observing a stream of traffic on a freeway. The BATmobile currently uses a hand-coded 
decision tree to make decisions on this basis, and is a fairly safe driver (although 
probably far from optimal) on our simulator. We are currently experimenting with 
lookahead methods to make approximately rational decisions, as well as supervised 

learning and reinforcement learning methods. 
As well as extending the scope of AI applications, new bricks for planning under 

uncertainty significantly increase the opportunity for metareasoning to make a difference. 
With logical planners, a plan either does or does not work; it has proved very difficult 
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to find heuristics to measure the “goodness” of a logical plan that does not guarantee 
success, or to estimate the likelihood that an abstract logical plan will have a successful 

concrete instance. This means that it is very hard to identify plan elaboration steps that 
are likely to have high value. In contrast, planners designed to handle uncertainty and 

utility have built-in information about the likelihood of success and there is a continuum 
from hopeless to perfect plans. Getting metareasoning to work for such systems is a 
high priority. It is also important to apply those methods such as partial-order planning 
and abstraction that have been so effective in extending the reach of classical planners. 

7.2. Directions for bounded optima@ 

Ongoing research on bounded optimality aims to extend the initial results of [40] to 
more interesting agent designs. In this section, I will sketch some design dimensions 
and the issues involved in establishing bounded optimality results. 

The general scheme to be followed involves defining a virtual machine M that runs 
programs from a class CM. Typically, programs will have a “fixed part” that is shared 
across some subclass and a “variable part” that is specific to the individual program. 
Then comparisons are made between the best programs in different subclasses for the 
same machine. For example, suppose M is a machine capable of running any feedfor- 
ward neural network. LM consists of all such networks, and we might be interested 
in comparing the subclasses defined by different network topologies, while within each 
subclass individual programs differ in the weights on the links of the network. Thus, 
the boundary between machine and program depends to some extent on the range of 
comparisons that the designer wishes to consider. 

At the most general level of analysis, the methodology is now quite straightforward: 
choose a machine, choose a program that runs on the machine, then dump the resulting 

agent into a class of environments E. The program with the best performance is bounded 
optimal for M in E. For example, M is an IBM PC with a C compiler; LM consists of C 
programs up to a certain size; the environment consists of a population of human chess 
opponents; the performance measure is the chess rating achieved; the bounded optimal 

program is the one with the highest rating. 
This rather blunt and unenlightening approach has no doubt occurred to many engaged 

in the construction of chess programs. As stated, the problem is ridiculously hard to 
solve and the solution, once found, would be very domain-specific. The problem is to 
define a research agenda for bounded optimality that provides a little more guidance and 
generality. This can be done by exploiting structure in the definition of the problem, in 
particular the orthogonality of time and content, and by using more sophisticated agent 
designs, particularly those that incorporate mechanisms for adaptation and optimization. 
In this way, we can prove bounded optimality results for more general classes of task 
environments. 

7.2.1. Mechanisms for optimization 
Modular design using a hierarchy of components is commonly seen as the only way to 

build reliable complex systems. The components fulfill certain behavioural specifications 
and interact in well-defined ways. To produce a composite bounded-optimal design, the 
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optimization problem involves allocating execution time to components [ 521 or arrang- 
ing the order of execution of the components [40] to maximize overall performance. 
As illustrated earlier in the discussion of universal ABO algorithms, the techniques 
for optimizing temporal behaviour are largely orthogonal to the content of the system 
components, which can therefore be optimized separately. Consider, for example, a com- 
posite system that uses an anytime inference algorithm over a belief network as one of 
its components. If a learning algorithm improves the accuracy of the belief network, 
the performance profile of the inference component will improve, which will result in a 

reallocation of execution time that is guaranteed to improve overall system performance. 
Thus, techniques such as the doubling construction and the time allocation algorithm in 
[52] can be seen as domain-independent tools for agent design. They enable bounded 
optimality results that do not depend on the specific temporal aspects of the environment 
class. As a simple example, we might prove that a certain chess program design is AR0 
for all time controls ranging from blitz to full tournament play. 

The results obtained so far for optimal time allocation have assumed a static, of- 
fline optimization process with predictable component performance profiles and fixed 

connections among components. One can imagine far more subtle designs in which 
individual components must deal with unexpectedly slow or fast progress in processing 

and changing needs for information from other components. This might involve ex- 
changing computational resources among components, establishing new interfaces, and 
so on. This is more reminiscent of a computational market, as envisaged by Wellman 
[ 511, than of the classical subroutine hierarchies, and would offer a useful additional 
level of abstraction in system design. 

7.2.2. Mechanisms for adaptation 
In addition to combinatorial optimization of the structure and temporal behaviour of 

an agent, we can also use learning methods to improve the design: 
l The content of an agent’s knowledge base can of course be improved by inductive 

learning. In [40], it is shown that approximately bounded optimal designs can 

be guaranteed with high probability if each component is learned in such a way 
that its output quality is close to optimal among all components of a given execu- 

tion time. Results from computational learning theory, particularly in the agnostic 
learning model [25], can provide learning methods with the required properties. 
The k:ey additional step is to analyze the way in which slight imperfection in each 
component carries through to slight imperfection in the whole agent. 

l Reinfbrcement learning can be used to learn value information such as utility 
functions. Recent results [ 491 provide convergence guarantees for reinforcement 
learning with a fairly broad class of function approximators. One can use such 
learning methods for metalevel information, e.g., the value of computation. In 
[ 42, (Chapter 61, this is shown to be an effective technique. Formal results on 
convergence to optimal control of search would be of great interest. Further work 
is needed, however, since current theorems assume a stationary distribution that 
generates the agent’s experiences whereas an agent that is improving its search 
control will presumably be exploring different populations of experiences over 
time. 
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l Compilation methods such as explanation-based learning can be used to transform 
an agent’s representations to allow faster decision making. Several agent archi- 

tectures including SOAR [28] use compilation to speed up all forms of problem 
solving. Some nontrivial results on convergence have been obtained by Tadepalli 

[ 481, based on the observation that after a given amount of experience, novel 
problems for which no solution has been stored should be encountered only infre- 
quently. 

Presumably, an agent architecture can incorporate all these learning mechanisms. One of 
the issues to be faced by bounded optimality research is how to prove convergence results 
when several adaptation and optimization mechanisms are operating simultaneously. A 

“quasistatic” approach, in which one mechanism reaches convergence before the other 
method is allowed to take its next step, seems theoretically adequate but not very 
practical. 

7.2.3. Ofline and online mechanisms 

One can distinguish between offline and online mechanisms for constructing bounded- 
optimal agents. An offline construction mechanism is not itself part of the agent and 
is not the subject of bounded optimality constraints. Let C be an offline mechanism 
designed for a class of environments E. Then a typical theorem will say that C operates 
in a specific environment E E E and returns an agent design that is ABO (say) for 
E-that is, an environment-specific agent. 

In the online case, the mechanism C is considered part of the agent. Then a typical 
theorem will say that the agent is ABO for all E E E. If the performance measure 
used is indifferent to the transient cost of the adaptation or optimization mechanism, the 
two types of theorems are essentially the same. On the other hand, if the cost cannot 
be ignored-for example, if an agent that learns quickly is to be preferred to an agent 

that reaches the same level of performance but learns more slowly-then the analysis 
becomes more difficult. It may become necessary to define asymptotic equivalence for 
“experience efficiency” in order to obtain robust results, as is done in computational 

learning theory. 
It is worth noting that one can easily prove the value of “lifelong learning” in the 

ABO framework. An agent that devotes a constant fraction of its computational resources 
to learning-while-doing cannot do worse, in the ABO sense, than an agent that ceases 
learning after some point. If some improvement is still possible, the lifelong learning 

agent will always be preferred. 

7.2.4. Fixed and variable computation costs 

Another dimension of design space emerges when one considers the computational 
cost of the “variable part” of the agent design. The design problem is simplified con- 
siderably when the cost is fixed. Consider again the task of metalevel reinforcement 
learning, and to make things concrete let the metalevel decision be made by a Q func- 
tion mapping from computational state and action to value. Suppose further that the 
Q function is to be represented by a neural net. If the topology of the neural net is 
fixed, then all Q functions in the space have the same execution time. Consequently, 
the optimality criterion used by the standard Q-learning process coincides with bounded 
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optimality, and the equilibrium reached will be a bounded-optimal configuration.5 On 
the other hand, if the topology of the network is subject to alteration as the design 
space is explored, then the execution time of the different Q-functions varies. In this 

case, the standard Q-learning process will not necessarily converge to a bounded-optimal 
configuration. A different adaptation mechanism must be found that takes into account 

the passage of time and its effect on utility. 
Whatever the solution to this problem turns out to be, the important point is that 

the notion of bounded optimality helps to distinguish adaptation mechanisms that will 

result in good performance from those that will not. Adaptation mechanisms derived 
from calculative rationality will fail in the more realistic setting where an agent cannot 
afford to aim for perfection. 

7.2.5. Fully variable architectures 
The discussion so far has been limited to fairly sedate forms of agent architecture 

in which the scope for adaptation is circumscribed to particular functional aspects such 
as metalevel Q functions. However, an agent must in general deal with an environment 

that is far more complex than itself and that exhibits variation over time at all levels of 

granularity. Limits on the size of the agent’s memory may imply that almost complete 
revision of the agent’s mental structure is needed to achieve high performance. For 
example, one can imagine that a simple rule-based agent living through cycles of winter 
and summer may have to discard all of its summer rules as winter approaches, and then 
relearn them from scratch the following year. Such situations may engender a rethinking 
of some of our notions of agent architecture and optimality, and suggest a view of agent 
programs as dynamical systems with various amounts of compiled and uncompiled 
knowledge and internal processes of inductive learning, forgetting, and compilation. 

7.2.6. Towards a grammar of AI systems 
The approach that seems to be emerging for bounded optimality research is to divide 

up the space of agent designs into “architectural classes” such that in each class the 

structural variation is sufficiently limited. Then ABO results can be obtained either 
by analytical optimization within the class or by showing that an empirical adaptation 
process results in an approximately ABO design. Once this is done, it should be possible 

to compare architecture classes directly, perhaps to establish asymptotic dominance of 
one class over another. For example, it might be the case that the inclusion of an 
appropriate “macro-operator formation” or “greedy me&reasoning” capability in a given 
architecture will result in an improvement in behaviour in the limit of very complex 
environments-that is, one cannot compensate for the exclusion of the capability by 
increasing the machine speed by a constant factor. A central tool in such work will be 
the use of “no-cost” results where, for example, the allocation of a constant fraction 

of computational resources to learning or metareasoning can do no harm to an agent’s 
ABO prospects. 

5 A similar observation was made by Horvitz and Brcese 1221 for cases where the object level is so restricted 
that the metalevel decision problem can be solved in constant time. 
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Getting all these architectural devices to work together smoothly is an important 
unsolved problem in AI and must be addressed before we can make progress on un- 

derstanding bounded optimality within these more complex architectural classes. If the 
notion of “architectural device” can be made sufficiently concrete, then AI may eventu- 

ally develop a grammar for agent designs, describing the devices and their interrelations. 
As the grammar develops, so should the accompanying ABO dominance results. 

8. Summary 

I have outlined some directions for formally grounded AI research based on bounded 
optimality as the desired property of AI systems. This perspective on AI seems to be 
a logical consequence of the inevitable philosophical “move” from optimization over 

actions or computations to optimization over programs. I have suggested that such an 
approach should allow synergy between theoretical and practical AI research of a kind 
not afforded by other formal frameworks. In the same vein, I believe it is a satisfactory 
formal counterpart of the informal goal of creating intelligence. In particular, it is entirely 
consistent with our intuitions about the need for complex structure in real intelligent 
agents, the importance of the resource limitations faced by relatively tiny minds in large 
worlds, and the operation of evolution as a design optimization process. One can also 
argue that bounded optimality research is likely to satisfy better the needs of those 

who wish to emulate human intelligence, because it takes into account the limitations 
on computational resources that are presumably responsible for most of the regrettable 
deviation from perfect rationality exhibited by humans. 

Bounded optimality and its asymptotic cousin are, of course, nothing but formally 

defined properties that one may want systems to satisfy. It is too early to tell whether 
ABO will do the same kind of work for AI that asymptotic complexity has done 
for theoretical computer science. Creativity in design is still the prerogative of AI 
researchers. It may, however be possible to systematize the design process somewhat 
and to automate the process of adapting a system to its computational resources and 
the demands of the environment. The concept of bounded optimality provides a way to 
make sure the adaptation process is “correct”. 

My hope is that with these kinds of investigations, it will eventually be possible to 
develop the conceptual and mathematical tools to answer some basic questions about in- 
telligence. For example, why do complex intelligent systems (appear to) have declarative 
knowledge structures over which they reason explicitly? This has been a fundamental 
assumption that distinguishes AI from other disciplines for agent design, yet the answer 
is still unknown. Indeed, Rod Brooks, Hubert Dreyfus, and others flatly deny the as- 
sumption. What is clear is that it will need something like a theory of bounded optimal 
agent design to answer this question. 

Most of the agent design features that I have discussed here, including the use of 
declarative knowledge, have been conceived within the standard methodology of “first 
build calculatively rational agents and then speed them up”. Yet one can legitimately 
doubt that this methodology will enable the AI community to discover all the design 
features needed for general intelligence. The reason is that no conceivable computer 
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will ever be remotely close to approximating perfect rationality for even moderately 
complex environments. Perfect ration~ity is, if you like, a “Newtoni~” definition for 
intelligent agents whereas the real world is a particle accelerator. It may well be the 
case that agents based on improvements to calculatively rational designs are not even 
close to achieving the level of performance that is potentially achievable given the 
underlying computational resources. For this reason, I believe it is imperative not to 
dismiss ideas for agent designs that do not seem at first glance to fit into the “classical” 
calculatively rational framework. Instead, one must attempt to understand the potential of 
the bounded optimal configurations within the corresponding architectural class, and to 
see if one can design the appropriate adaptation mechanisms that might help in realizing 
these configurations. 

As mentioned in the previous section, there is also plenty of work to do in the 
area of making more general and more robust “bricks” from which to construct AI 
systems for more realistic environments, and such work will provide added scope for 
the achievement of bounded optimality. In a sense, under this conception AI research is 
the same now as it always should have been. 
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