
Artificial Intelligence 94 (1997) 57-77

Artificial
Intelligence

Rationality and intelligence

Stuart J. Russell 1
Computer Science Division, University of California, Berkeley, CA 94720, USA

Abstract

The long-term goal of our field is the creation and understanding of intelligence. Productive
research in AI, both practical and theoretical, benefits from a notion of intelligence that is precise
enough to allow the cumulative development of robust systems and general results. The concept of
rational agency has long been considered a leading candidate to fulfill this role. This paper outlines
a gradual evolution in the formal conception of rationality that brings it closer to our informal
conception of intelligence and simultaneously reduces the gap between theory and practice. Some
directions for future research are indicated. @ 1997 Elsevier Science B.V.

Keywords: Philosophical foundations; Intelligence; Rationality; Bounded rationality; Bounded optimality

1. Artificial intelligence

AI is a field whose ultimate goal has often been somewhat ill-defined and subject to

dispute. Some researchers aim to emulate human cognition, others aim at the creation
of intelli,gence without concern for human characteristics, and still others aim to create
useful artifacts without concern for abstract notions of intelligence.

This variety is not necessarily a bad thing, since each approach uncovers new ideas
and provides fertilization to the others. But one can argue that, since philosophers
abhor a definitional vacuum, many of the damaging and ill-informed debates about the

feasibility of AI have been about definitions of AI to which we as AI researchers do
not subscribe.

My own motivation for studying AI is to create and understand intelligence as a
general property of systems, rather than as a specific attribute of humans. I believe this
to be an appropriate goal for the field as a whole, and it certainly includes the creation
of useful artifacts-both as a spin-off and as a focus and driving force for technological

’ Email: russell@cs.berkeley.edu.

0004-3702/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved.
PII SOOOG-3702 (97) 00026-X

58 S.J. Russell/Artificial Intelligence 94 (1997) 57-77

development. The difficulty with this “creation of intelligence” view, however, is that
it presupposes that we have some productive notion of what intelligence is. Cognitive

scientists can say “Look, my model correctly predicted this experimental observation
of human cognition”, and artifact developers can say “Look, my system is saving
lives/megabucks”, but few of us are happy with papers saying “Look, my system is
intelligent”. This difficulty is compounded further by the need for theoretical scaffolding
to allow us to design complex systems with confidence and to build on the results
of others. “Intelligent” must be given a definition that can be related directly to the

system’s input, structure, and output. Such a definition must also be general. Otherwise,
AI subsides into a smorgasbord of fields-intelligence as chess playing, intelligence as

vehicle control, intelligence as medical diagnosis.
In this paper, I shall outline the development of such definitions over the history

of AI and related disciplines. I shall examine each definition as a predicate P that

can be applied, supposedly, to characterize systems that are intelligent. For each P, I
shall discuss whether the statement “Look, my system is P” is interesting and at least
sometimes true, and the sort of research and technological development to which the

study of P-systems leads.
I shall begin with the idea that intelligence is strongly related to the capacity for

successful behaviour-the so-called “agent-based” view of AI. The candidates for formal
definitions of intelligence are as follows:

l PI : Pelfect rationality, or the capacity to generate maximally successful behaviour

given the available information.
l P2: Calculative rationality, or the in-principle capacity to compute the perfectly

rational decision given the initially available information.

l P3: Metakvel rationality, or the capacity to select the optimal combination of
computation-sequence-plus-action, under the constraint that the action must be

selected by the computation.
l P4: Bounded optimality, or the capacity to generate maximally successful behaviour

given the available information and computational resources.
All four definitions will be fleshed out in detail, and I will describe some results that
have been obtained so far along these lines. Then I will describe ongoing and future
work under the headings of calculative rationality and bounded optimality.

I shall be arguing that, of these candidates, bounded optimality comes closest to
meeting the needs of AI research. There is always a danger, in this sort of claim,
that its acceptance can lead to “premature mathematization”, a condition characterized
by increasingly technical results that have increasingly little to do with the original

problem-in the case of AI, the problem of creating intelligence. Is research on bounded
optimality a suitable stand-in for research on intelligence? I hope to show that P4,
bounded optimality, is more suitable than PI through P3 because it is a real problem
with real and desirable solutions, and also because it satisfies some essential intuitions
about the nature of intelligence. Some important questions about intelligence can only be
formulated and answered within the framework of bounded optimality or some relative
thereof. Only time will tell, however, whether bounded optimality research, perhaps with
additional refinements, can generate enough theoretical scaffolding to support significant
practical progress in AI.

S.J. Russell/Art$cial Intelligence 94 (1997) 57-77 59

2. Agents

Until fairly recently, it was common to define AI as the computational study of
“mental faculties” or “intelligent systems”, catalogue various kinds, and leave it at
that. This does not provide much guidance. Instead, one can define AI as the prob-
lem of designing systems that do the right thing. Now we just need a definition for
“right”.

This approach involves considering the intelligent entity as an agent, that is to say
a system that senses its environment and acts upon it. Formally speaking, an agent is
defined by the mapping from percept sequences to actions that the agent instantiates.

Let 0 be the set of percepts that the agent can observe at any instant, and A be the
set of possible actions the agent can carry out in the external world (including the
action of doing nothing). Thus the agent function f : 0* -+ A defines how an agent
behaves under all circumstances. What counts in the first instance is what the agent does,

not necessarily what it thinks, or even whether it thinks at all. This initial refusal to
consider -further constraints on the internal workings of the agent (such as that it should

reason logically, for example) helps in three ways: first, it allows us to view such
“cognitive faculties” as planning and reasoning as occurring in the service of finding
the right thing to do; second, it encompasses rather than excludes the position that
systems can do the right thing without such cognitive faculties [1,4] ; third, it allows
more freedom to consider various specifications, boundaries, and interconnections of

subsystems.
The agent-based view of AI has moved quickly from workshops on “situatedness”

and “embeddedness” to mainstream textbooks [10,391 and buzzwords in Newsweek.

Rational agents, loosely speaking, are agents whose actions make sense from the point

of view of the information possessed by the agent and its goals (or the task for which

it was designed). Rationality is a property of actions and does not specify-although
it does c:onstrain-the process by which the actions are selected. This was a point
emphasized by Simon [461, who coined the terms substantive rationality and proce-

dural rationality to describe the difference between th& question of what decision to
make and the question of how to make it. That Rod Brooks’ 1991 Computers and
Thought lecture was titled “Intelligence without Reason” (see also [5]) emphasizes
the fact that reasoning is (perhaps) a derived property of agents that might, or might
not, be a good implementation scheme to achieve rational behaviour. Justifying the

cognitive structures that many AI researchers take for granted is not an easy prob-
lem.

One other consequence of the agent-based view of intelligence is that it opens AI up
to competition from other fields that have traditionally looked on the embedded agent
as a natural topic of study. Control theory is foremost among these, but evolutionary
programming and indeed evolutionary biology itself also have ideas to contribute.*

‘1 view lhis as a very positive development. AI is a field defined by its problems, not its methods. Its
principal insights-among them the learning, use, and compilation of explicit knowledge in the service of

decision making-can certainly withstand the influx of new methods from other fields. This is especially true
when other, fields are simultaneously embracing the insights derived within AI.

60 S.J. Russell/Artificial Intelligence 94 (1997) 57-77

Percept history

State history

\Ir

Value

Fig. 1. The agent receives percepts from the environment and generates a behaviour which in turn causes the

environment to generate a state history. The performance measure evaluates the state history to arrive at the

value of the agent.

The prevalence of the agent view has also helped the field move towards solving real
problems, avoiding what Brooks calls the “hallucination” problem that arises when the
fragility of a subsystem is masked by having an intelligent human providing input to it

and interpreting its outputs.

3. Perfect rationality

Perfect rationality constrains an agent’s actions to provide the maximum expectation
of success given the information available. We can expand this notion as follows (see
Fig. 1) . The fundamental inputs to the definition are the environment class E in which
the agent is to operate and the performance measure U which evaluates the sequence of

states through which the agent drives the actual environment. Let V(f, E, U) denote the
expected value according to U obtained by an agent function f in environment class E,

where (for now) we will assume a probability distribution over elements of E. Then a
perfectly rational agent is defined by an agent function fopt such that

fopt = argmaxf V(f, E, W .

This is just a fancy way of saying that the best agent does the best it can. The point
is that perfectly rational behaviour is a well-defined function of E and U, which I
will call the tusk environment. The problem of computing this function is addressed
below.

The theoretical role of perfect rationality within AI is well-described by Newell’s
paper on the Knowledge Level [35]. Knowledge-level analysis of AI systems relies
on an assumption of perfect rationality. It can be used to establish an upper bound on
the performance of any possible system, by establishing what a perfectly rational agent
would do given the same knowledge.

S.J. Russell/Artijicial Intelligence 94 (1997) 57-77 61

Although the knowledge that a perfectly rational agent has determines the actions that
it will take given its goals, the question of where the knowledge comes from is not well
understood. That is, we need to understand rational learning as well as rational action.
In the logical view of rationality, learning has received almost no attention-indeed,
Newell’s analysis precludes learning at the knowledge level. In the decision-theoretic
view, Bayesian updating provides a model for rational learning, but this pushes the
question back to the prior [6]. The question of rational priors, p~ticul~ly for expressive
representation languages, remains unsettled.

Another aspect of perfect rationality that is lacking is the development of a suitable
body of techniques for the specification of utility functions. In economics, many results
have been derived on the decomposition of overall utility into attributes that can be
combined in various ways [261, yet such methods have made few inroads into AI (but
see [2,50]). We also have little idea how to specify utility over time, and although
the question has been raised often, we do not have a satisfactory understanding of the
relationship between goals and utility.

The good thing about perfectly rational agents is that if you have one handy, you prefer
it to any other agent. Furthermore, if you are an economist you can prove nice results
about economies populate by them; and if you want to design dis~ibut~ intelligent
systems, assuming perfect rationality on the part of each agent makes the design of
the interaction mechanisms much easier. The bad thing is that the theory of perfect
rationality does not provide for the analysis of the internal design of the agent: one
perfectly rational agent is as good as another. The really bad thing, as pointed out by
Simon, is that perfectly rational agents do not exist. Physical m~h~isms take time
to process information and select actions, hence the behaviour of real agents cannot
immediately reflect changes in the environment and will generally be suboptimal.

4. Cakulati7e ration~ity

Before discussing calculative rationality, it is necessary to introduce a distinction
between the agent function and the agent program. In AI, an agent is implemented as
a program, which I shall call 1, running on a machine, which I shall call M. An agent
program receives as input the current percept, but also has internal state that reflects, in
some form, the previous percepts. It outputs actions when they have been selected. From
the outside, the behaviour of the agent consists of the selected actions interspersed with
inaction (or whatever default actions the machine generates).

Calculative rationality is displayed by programs that, if executed infinitely fast, would
result in perfectly rational behaviour. Unlike perfect rationality, calculative rationality is
a requirement that can be fulfills by many real programs. Also unlike perfect rationality,
calculative rationality is not necessarily a desirable property. For example, a calculatively
rational chess program will choose the “right” move, but may take 16’ times too long
to do so.

The pursuit of calculative rationality has nonetheless been the main activity of theo-
retically well-founded research in AI. In the early stages of the field, it was impo~~t to
concentrate on “epistemological adequacy” before “heuristic adequacy”-that is, capa-

62 S.J. Russell/Artificial Intelligence 94 (1997) 57-77

bility in principle rather than in practice. 3 Calculative rationality has been the mainstay
of both the logical and the decision-theoretic traditions. In the logical tradition, the
performance measure accepts behaviours that achieve the specified goal in all cases and
rejects any others. Thus Newell [351 defines rational actions as those that are guaranteed

to achieve one of the agent’s goals. Logical planning systems, such as theorem-provers
using situation calculus, satisfy the conditions of calculative rationality under this defi-
nition. In the decision-theoretic tradition, the design of calculatively rational agents has
largely gone on outside AI-for example, in stochastic optimal control theory [27].

Representations have usually been very impoverished (state-based rather than senten-
tial) and solvable problems have been either very small or very specialized. Within AI,

the development of probabilistic networks or belief networks has opened up many new

possibilities for agent design, providing in many cases an exponential reduction in rep-
resentational complexity. Systems based on influence diagrams (probabilistic networks
with action and value nodes added) satisfy the decision-theoretic version of calculative
rationality.

In practice, neither the logical nor the decision-theoretic traditions can avoid the
intractability of the decision problems posed by the requirement of calculative rationality.
One response is to rule out sources of exponential complexity in the representations and
reasoning tasks addressed, so that calculative and perfect rationality coincide-at least, if

we ignore the little matter of polynomial-time computation. This position was expounded

in two fascinating Computers and Thought lectures given by Hector Levesque in 1985
[30,3 l] and by Henry Kautz in 1989. The accompanying research results on tractable
sublanguages are perhaps best seen as indications of where complexity may be an

issue rather than as a solution to the problem of complexity. The idea of restricting
expressiveness was strongly opposed by Doyle and Patil [141, who pointed out that
it also restricts the applicability of the representation and inference services designed

under such constraints. 4
In the area of distributed AI, the system designer has control over that part of each

agent’s environment that involves negotiations with other agents. Thus, one possible way
to control complexity is to constrain the negotiation problem so that optimal decisions

can be made easily. For example, the Clarke Tax mechanism can be used to ensure
that the best policy for each agent is simply to state its preferences truthfully [151. Of

course, this approach does not necessarily result in optimal behaviour by the ensemble
of agents; nor does it solve the problem of complexity in interacting with the rest of the

environment.
The most common response to complexity has been to use various speedup techniques

and approximations in the hope of getting reasonable behaviour. AI has developed a very
powerful armoury of methods for reducing complexity, including the decomposition of
state representations into sentential form; sparse representations of environment models

3 Perhaps not coincidentally, this decision was taken before the question of computational intractability was

properly understood in computer science.
4 Doyle and Patil propose instead the idea of “rational management of inference”. Representation systems

“should be designed to offer a broad mix of services varying in cost and quality” and should take into account

“the costs and benefits [of computations] as perceived by the system’s user”. That is, they suggest a solution
based on rational metareasoning, as discussed in Section 5.

(as in STRIPS operators); solution decomposition methods such as partial-order plan-
ning and abstraction; approximate, parameterized representations of value functions for
reinforcement learning; compilation (chunking, macro-operators, EBL, etc.); and the
application of metalevel control. Although some of these methods can retain guarantees
of optimality and are effective for moderately large problems that are well structured, it
is inevitable that intelligent agents will be unable to act rationally in all circumstances.
This observation has been a commonplace since the very beginning of AI. Yet systems
that select suboptimal actions fall outside calculative rationality per se, and we need a

better theory to understand them.

5. Metalrevel rationality

Metalevel ration~ity, also called Type II rationaIity by I.J. Good [IS], is based on the
idea of finding an optimal tradeoff between computational costs and decision quality.
Although Good never made his concept of Type II rationality very precise-he defines
it as “the maximization of expected utility taking into account deliberation costs-it
is clear that the aim was to take advantage of some sort of ~eta~~e~ architecture to

implement this tradeoff. Metalevel architecture is a design philosophy for intelligent
agents that divides the agent into two (or more) notional parts. The object level carries
out computations concerned with the application domain-for example, projecting the

results of physical actions, computing the utility of certain states, and so on. The
metalevel is a second decision-making process whose application domain consists of
the object-level computations themselves and the computational objects and states that

they affect. Met~e~oning has a long history in AI, going back at least to the early
1970s (see [421 for historical details). One can also view selective search methods
and pruning strategies as embodying metalevel expertise concerning the desirability of
pursuing particular object-level search operations.

The theory of rationaE metareasoning formalizes the intuition that the metalevel can
“do the right thinking.” The basic idea is that object-level computations are actions with

costs (the passage of time) and benefits (improvements in decision quality). A rational
mctalevel selects computations according to their expected utility. Rational metareason-
ing has as a precursor the theory of information value [23]-the notion that one can
calculate the decision-theoretic value of acquiring an additional piece of information by

simulating the decision process that would be followed given each possible outcome of
the information request, thereby estimating the expected improvement in decision quality

averaged lover those outcomes. The application to computational processes, by analogy
to information-gathering, seems to have originated with Matheson [321. In AI, Horvitz
[20,211, Breese and Fehling [31, and Russell and Wefald [4 l-431 all showed how
the idea of value of computation could solve the basic problems of real-time decision

making.
The work done with Eric Wefald looked in particular at search algorithms, in which the

object-level computations extend projections of the results of various courses of actions
further into the future. For example, in chess programs, each object-level computation
expands a leaf node of the game tree. The metalevel problem is then to select nodes

64 S.J. Russell/Artificial Intelligence 94 (1997) 57-77

for expansion and to terminate search at the appropriate point. The principal problem
with metareasoning in such systems is that the local effects of the computations do not
directly translate into improved decisions, because there is also a complex process of
propagating the local effects at the leaf back to the root and the move choice. It turns
out that a general formula for the value of compu~tion can be found in terms of the
“local effects” and the “propagation function”, . such that the formula can be instantiated
for any particular object-level system (such as minimax propagation), compiled, and
executed efficiently at runtime. This method was implemented for two-player games,
two-player games with chance nodes, and single-agent search. In each case, the same
general metareasoning scheme resulted in efficiency improvements of roughly an order
of magnitude over traditional, highly-engineered algorithms.

Another general class of met~~soning problems arises with o~ytime [111 or~~i~~e
[20] algorithms, which are algorithms designed to return results whose quality varies
with the amount of time allocated to computation. The simplest type of metareasoning
trades off the expected increase in decision quality for a single algorithm, as measured
by a performance projile, against the cost of time [45]. A greedy termination condition
is optimal if the second derivative of the performance profile is negative. More complex
problems arise if one wishes to build complex real-time systems from anytime compo-
nents. First, one has to ensure the inte~rffptibizi~ of the composed system-that is, to
ensure that the system as a whole can respond robustly to immediate demands for output.
The solution is to interieave the execution of all the components, allocating time to each
component so that the total time for each complete iterative improvement cycle of the
system doubles at each iteration. In this way, we can construct a complex system that
can handle arbitrary and unexpected real-time demands exactly as if it knew the exact
time available in advance, with just a small (< 4) constant factor penalty in speed [441.
Second, one has to allocate the available computation optimalIy among the components
to maximize the total output quality. Although this is NP-hard for the general case, it
can be solved in time linear in program size when the call graph of the components is
tree-structured [521. Although these results are derived in the relatively clean context
of anytime algorithms with well-defined performance profiles, there is reason to expect
that the general problem of robust real-time decision-making in complex systems can
be handled in practice.

Over the last few years, an interesting debate has emerged conceding the nature
of met~nowl~ge and met~e~oning. TEBRESIAS [91 established the idea that explicit,
domain-specific metaknowledge was an important aspect of expert system creation. Thus,
metaknowledge is a sort of “extra” domain knowledge, over and above the object-level
domain knowledge, that one has to add to an AI system to get it to work well. On
the other hand, in the work on rational metareasoning described above, it is clear that
the metatheory describing the effects of compartations is domain-independent [17,421.
In principle, no additional domain knowledge is needed to assess the benefits of a
computation. In practice, met~easoning from first principles can be very expensive,
To avoid this, the results of metalevel analysis for particular domains can be compiled
into domain-specific metaknowledge, or such knowledge can be learned directly from
experience (see [42, Chapter 61 and [341). This view of emerging “computational
expertise” leads to a fundamental insight into intelligence-namely, that there is an

S.J. Russell/Art@cial Intelligence 94 (1997) 57-77 65

interesting sense in which algorithms are not a necessary part of AI systems. Instead,
one can imagine a general process of rationally guided computation interacting with
properties of the environment to produce more and more efficient decision making. To
my mind., this way of thinking finesses one major puzzle of AI: if what is required for
AI is incredibly devious and superbly efficient algorithms far surpassing the current best
efforts of computer scientists, how did evolution (and how will machine learning) ever
get there?

Significant open problems remain in the area of rational metareasoning. One obvi-

ous difficulty is that almost all systems to date have adopted a myopic strategy-a
greedy, depth-one search at the metalevel. Obviously, the problem of optimal selection

of computation sequences is at least as intractable as the underlying object-level prob-
lem. Nonetheless, sequences must be considered because in some cases the value of a
computation may not be apparent as an improvement in decision quality until further

computations have been done. This suggests that techniques from reinforcement learn-
ing could be effective, especially as the “reward function” for computation-that is, the
improvement in decision quality-is easily available to the metalevel post hoc. Other
possible areas for research include the creation of effective metalevel controllers for
more complex systems such as abstraction hierarchy planners, hybrid architectures, and

so on.
Although rational me&reasoning seems to be a useful tool in coping with complexity,

the concept of metalevel rationality as a formal framework for resource-bounded agents

does not seem to hold water. The reason is that, since metareasoning is expensive, it
cannot be carried out optimally. The history of object-level rationality has repeated it-

self at the metalevel: perfect rationality at the metalevel is unattainable and calculative
rationality at the metalevel is useless. Therefore, a time/optimality tradeoff has to be
made for metalevel computations, as for example with the myopic approximation men-
tioned above. Within the framework of metalevel rationality, however, there is no way
to identify the appropriate tradeoff of time for metalevel decision quality. Any attempt
to do so via a metametalevel simply results in a conceptual regress. Furthermore, it is
entirely possible that in some environments, the most effective agent design will do no
metareasoning at all, but will simply respond to circumstances. These considerations

suggest that the right approach is to step outside the agent, as it were; to refrain from
micromanaging the individual decisions made by the agent. This is the approach taken
in bounded optimality.

6. Bounded optimality

The difficulties with perfect rationality and metalevel rationality arise from the impo-
sition of constraints on things (actions, computations) that the agent designer does not
directly control. Specifying that actions or computations be rational is of no use if no
real agems can fulfill the specification. The designer controls the program. In [40], the

notion of feasibility for a given machine is introduced to describe the set of all agent
functions that can be implemented by some agent program running on that machine.
This is somewhat analogous to the idea of computability, but is much stricter because it

66 S.J. R~seli/~rti~c~al Intelligence 94 fI 997) 57-77

relates the operation of a program on a formal machine model with finite speed to the
actual temporal behaviour generated by the agent.

Given this view, one is led i~ediately to the idea that optimal feasible behaviour is
an interesting notion, and to the idea of finding the program that generates it. Suppose
we define Agent(1, M) to be the agent function implemented by the program I running
on machine M. Then the bounded optimal program lopt is defined by

1 *Pt = afgmqECM VtAgent(l,~),E,V),

where L:M is the finite set of all programs that can be run on M. This is P4, bounded
optimality.

In AI, the idea of bounded optimality floated around among several discussion groups
interested in the general topic of resource-bounded rationality in the late 198Os, par-
ticularly those at Rockwell (organized by Michael Fehling) and Stanford (organized
by Michael Bratman). The term “bounded optimality” seems to have been originated
by Eric Horvitz [21], who defined it informally as “the optimization of computa-
tional utility given a set of assumptions about expected problems and constraints on
resources”.

Similar ideas have also surfaced recently in game theory, where there has been a
shift from consideration of optimal decisions in games to a consideration of optimal
decision-making programs. This leads to different results because it limits the ability
of each agent to do unlimited simulation of the other, who is also doing unlimit~
simulation of the first, and so on. Even the requirement of computability makes a
significant difference [33]. Bounds on the complexity of players have also become
a topic of intense interest. Papadimitriou and Yannakakis [36] have shown that a
collaborative equilib~um exists for the iterated Prisoner’s Dilemma game if each agent
is a finite automaton with a number of states that is less than exponential in the number
of rounds. This is essentially a bounded optimality result, where the bound is on space
rather than speed of computation.

Philosophy has also seen a gradual evolution in the definition of rationality. There
has been a shift from consideration of act utilitarianism-the rationality of individual
acts-to rule utilitun’anism, or the rationality of general policies for acting. The require-
ment that policies be feasible for limited agents was discussed extensively by Cherniak
[81 and Harman [191. A philosophical proposal generally consistent with the notion
of bounded optimality can be found in the “Moral First Aid Manual” [131. Dennett
explicitly discusses the idea of reaching an optimum within the space of feasible deci-
sion procedures, using as an example the Ph.D. admissions procedure of a philosophy
department. He points out that the bounded optimal admissions procedure may be some-
what messy and may have no obvious hallmark of “optimality”-in fact, the admissions
com~tt~ may continue to tinker with it since bounded optimal systems may have no
way to recognize their own bounded optimality.

In work with Devika Subramanian, the general idea of bounded optimality has been
placed in a formal setting so that one can begin to derive rigorous results on bounded
optimal programs. This involves setting up completely specified rel~onships among
agents, programs, machines, environments, and time. We found this to be a very valu-
able exercise in itself. For example, the “folk AI” notions of “real-time environments”

S.J. RusselUArtQicial Intelligence 94 (1997) 57-77 67

and ‘deadlines” ended up with definitions rather different than those we had initially
imagined. From this foundation, a very simple machine architecture was investigated in
which the program consists of decision procedures of fixed execution time and decision
quality. In a “stochastic deadline” environment, it turns out that the utility attained by
running several procedures in sequence until interrupted is often higher than that attain-
able by any single decision procedure. That is, it is often better first to prepare a “quick
and dirty” answer before emb~king on more involved calculations in case the latter do
not finish in time.

The interesting aspect of these results, beyond their value as a demonstration of non-
trivial proofs of bounded optimality, is that they exhibit in a simple way what I believe
to be a major feature of bounded optimal agents: the fact that the pressure towards op-
timality within a finite machine results in more complex program structures. Intuitively,
efficient d~ision-~ng in a complex environment requires a software architecture that
offers a wide variety of possible computational options, so that in most situations the
agent has at least some computations available that provide a significant increase in
decision quality.

One possible objection to the basic model of bounded optimality outlined above is
that solutions are not robust with respect to small v~iations in the environment or the
machine. This in turn would lead to difficulties in analysing complex system designs.
Theoretical computer science faced the same problem in describing the running time of
algorithms, because counting steps and describing instruction sets exactly gives the same
kind of fragile results on optimal algorithms. The 00 notation was developed to deal
with this and provides a much more robust way to describe complexity that is indepen-
dent of machine speeds and implementation details. This robustness is also essential in
allowing complexity results to develop cumulatively. In [401, the corresponding notion
is asymptotic bounded optimality (ABO) . As with classical complexity, we can define
both average-case and worst-case ABO, where “case” here means the environment. For
example, worst-case ABO is defined as follows:

Worst-case asymptotic bounded optimality. An agent program 1 is timewise (or space-
wise) worst-case ABO in E on M iff

3k,no Yl’,n n > no + V*(Agent(l, kM), E,U,n) 2 V*(Agent(l’,M), E, U,n)

where kM denotes a version of M speeded up by a factor k (or with k times more
memory) and V*(f, E, V, n) is the minimum value of V(f, E, U) for all E in E of
complexity n.

In English, this means that the program is basically along the right lines if it just
needs a faster (larger) machine to have worst-case behaviour as good as that of any
other program in all environments.

Another possible objection to the idea of bounded optimality is that it simply shifts
the intractable computational burden of metalevel rationality from the agent’s metalevel
to the designer’s object level. Surely, one might argue, the designer now has to solve
offline all the metalevel opti~zation problems that were intractable when online. This
argument is not without merit-indeed, it would be surprising if the agent design prob-

68 S.J. Russell/Art$cial Inrelligence 94 (1997) 57-77

lem turns out to be easy. There is however, a significant difference between the two
problems, in that the agent designer is presumably creating an agent for an entire class
of environments, whereas the putative metalevel agent is working in a specific environ-
ment. That this can make the problem easier for the designer can be seen by considering
the example of sorting algorithms. It may be very difficult indeed to sort a list of a

trillion elements, but it is relatively easy to design an asymptotically optimal algorithm
for sorting. In fact, the difficulties of the two tasks are unrelated. The unrelatedness
would still hold for BO as well as ABO design, but the ABO definitions make it a good

deal clearer.
It can be shown easily that worst-case ABO is a generalization of asymptotically

optimal algorithms, simply by constructing a “classical environment” in which classical
algorithms operate and in which the utility of the algorithm’s behaviour is a decreasing
positive function of runtime if the output is correct and zero otherwise. Agents in
more general environments may need to trade off output quality for time, generate

multiple outputs over time, and so on. As an illustration of how ABO is a useful
abstraction, one can show that under certain restrictions one can construct universal

ABO programs that are ABO for any time variation in the utility function, using the
doubling construction from [441. Further directions for bounded optimality research are

discussed below.

7. What is to he done?

This section describes some of the research activities that will, I hope, help to turn
bounded optimality into a creative tool for AI system design. First, however, I shall

describe work on calculatively rational systems that needs to be done in order to enrich

the space of agent programs.

7.1. Components for calculative rationality

As mentioned above, the correct design for a rational agent depends on the task

environment-the “physical” environment and the performance measure on environment
histories. It is possible to define some basic properties of task environments that, together
with the complexity of the problem, lead to identifiable requirements on the correspond-
ing rational agent designs [39, Chapter 21. The principal properties are whether the
environment is fully observable or partially observable, whether it is deterministic or
stochastic, whether it is static (i.e., does not change except when the agent acts) or dy-
namic, and whether it is discrete or continuous. Although crude, these distinctions serve
to lay out an agenda for basic research in AI. By analysing and solving each subcase and
producing calculatively rational mechanisms with the required properties, theoreticians
can produce the AI equivalent of bricks, beams, and mortar with which AI architects
can build the equivalent of cathedrals. Unfortunately, many of the basic components
are currently missing. Others are so fragile and non-scalable as to be barely able to
support their own weight. This presents many opportunities for research of far-reaching
impact.

S.J. Russell/Art@cial Intelligence 94 (1997) 57-77 69

The logicist tradition of goal-based agent design, based on the creation and execution
of guaranteed plans, is firmly anchored in fully observable, deterministic, static, and
discrete task environments. (Furthermore, tasks are usually specified as logically defined

goals rather than general utility functions.) This means that agents need keep no internal
state and can even execute plans without the use of perception.

The theory of optimal action in stochastic, partially observable environments goes
under the heading of POMDPs (Partially Observable Markov Decision Problems), a
class of problems first addressed in the work of Sondik [47] but almost completely

unknown in AI until recently [71. Similarly, very little work of a fundamental nature

has been done in AI on dynamic environments, which require real-time decision making,
or on continuous environments, which have been largely the province of geometry-based
robotics. !Since most real-world applications are partially observable, nondeterministic,
dynamic, and continuous, the lack of emphasis is somewhat surprising.

There are, however, several new bricks under construction. For example, dynamic
probabilistic networks (DPNs) [121 provide a mechanism to maintain beliefs about the
current state of a dynamic, partially observable, nondeterministic environment, and to
project forward the effects of actions. Also, the rapid improvement in the speed and
accuracy ‘of computer vision systems has made interfacing with continuous physical
environments more practical. In particular, the application of Kalman filtering [24], a
widely used technique in control theory, allows robust and efficient tracking of moving

objects; DPNs extend Kalman filtering to allow more general representations of world
state. Reinforcement learning, together with inductive learning methods for continuous
function representations such as neural networks, allow learning from delayed rewards
in continuous, nondeterministic environments. Recently, Parr and Russell [371, among
others, have had some success in applying reinforcement learning to partially observable
environments. Finally, learning methods for static and dynamic probabilistic networks
with hidden variables (i.e., for partially observable environments) may make it possible

to acquire the necessary environment models [29,381.
The Bayesian Automated Taxi (a.k.a. BATmobile) project [161 is an attempt to

combine all these new bricks to solve an interesting application problem, namely driving

a car on a freeway. Technically, this can be viewed as a POMDP because the environment
contains relevant variables (such as whether or not the Volvo on your left is intending

to change lanes to the right) that are not observable, and because the behaviour of other
vehicles and the effects of one’s own actions are not exactly predictable. In a POMDP,
the optimal decision depends on the joint probability distribution over the entire set of
state variables. It turns out that a combination of real-time vision algorithms, Kalman
filtering, and dynamic probabilistic networks can maintain the required distribution when
observing a stream of traffic on a freeway. The BATmobile currently uses a hand-coded
decision tree to make decisions on this basis, and is a fairly safe driver (although
probably far from optimal) on our simulator. We are currently experimenting with
lookahead methods to make approximately rational decisions, as well as supervised

learning and reinforcement learning methods.
As well as extending the scope of AI applications, new bricks for planning under

uncertainty significantly increase the opportunity for metareasoning to make a difference.
With logical planners, a plan either does or does not work; it has proved very difficult

70 S.J. RusseWArtijicial Intelligence 94 (1997) 57-77

to find heuristics to measure the “goodness” of a logical plan that does not guarantee
success, or to estimate the likelihood that an abstract logical plan will have a successful

concrete instance. This means that it is very hard to identify plan elaboration steps that
are likely to have high value. In contrast, planners designed to handle uncertainty and

utility have built-in information about the likelihood of success and there is a continuum
from hopeless to perfect plans. Getting metareasoning to work for such systems is a
high priority. It is also important to apply those methods such as partial-order planning
and abstraction that have been so effective in extending the reach of classical planners.

7.2. Directions for bounded optima@

Ongoing research on bounded optimality aims to extend the initial results of [40] to
more interesting agent designs. In this section, I will sketch some design dimensions
and the issues involved in establishing bounded optimality results.

The general scheme to be followed involves defining a virtual machine M that runs
programs from a class CM. Typically, programs will have a “fixed part” that is shared
across some subclass and a “variable part” that is specific to the individual program.
Then comparisons are made between the best programs in different subclasses for the
same machine. For example, suppose M is a machine capable of running any feedfor-
ward neural network. LM consists of all such networks, and we might be interested
in comparing the subclasses defined by different network topologies, while within each
subclass individual programs differ in the weights on the links of the network. Thus,
the boundary between machine and program depends to some extent on the range of
comparisons that the designer wishes to consider.

At the most general level of analysis, the methodology is now quite straightforward:
choose a machine, choose a program that runs on the machine, then dump the resulting

agent into a class of environments E. The program with the best performance is bounded
optimal for M in E. For example, M is an IBM PC with a C compiler; LM consists of C
programs up to a certain size; the environment consists of a population of human chess
opponents; the performance measure is the chess rating achieved; the bounded optimal

program is the one with the highest rating.
This rather blunt and unenlightening approach has no doubt occurred to many engaged

in the construction of chess programs. As stated, the problem is ridiculously hard to
solve and the solution, once found, would be very domain-specific. The problem is to
define a research agenda for bounded optimality that provides a little more guidance and
generality. This can be done by exploiting structure in the definition of the problem, in
particular the orthogonality of time and content, and by using more sophisticated agent
designs, particularly those that incorporate mechanisms for adaptation and optimization.
In this way, we can prove bounded optimality results for more general classes of task
environments.

7.2.1. Mechanisms for optimization
Modular design using a hierarchy of components is commonly seen as the only way to

build reliable complex systems. The components fulfill certain behavioural specifications
and interact in well-defined ways. To produce a composite bounded-optimal design, the

S.J. Russell/Art$cial Intelligence 94 (1997) 57-77 71

optimization problem involves allocating execution time to components [521 or arrang-
ing the order of execution of the components [40] to maximize overall performance.
As illustrated earlier in the discussion of universal ABO algorithms, the techniques
for optimizing temporal behaviour are largely orthogonal to the content of the system
components, which can therefore be optimized separately. Consider, for example, a com-
posite system that uses an anytime inference algorithm over a belief network as one of
its components. If a learning algorithm improves the accuracy of the belief network,
the performance profile of the inference component will improve, which will result in a

reallocation of execution time that is guaranteed to improve overall system performance.
Thus, techniques such as the doubling construction and the time allocation algorithm in
[52] can be seen as domain-independent tools for agent design. They enable bounded
optimality results that do not depend on the specific temporal aspects of the environment
class. As a simple example, we might prove that a certain chess program design is AR0
for all time controls ranging from blitz to full tournament play.

The results obtained so far for optimal time allocation have assumed a static, of-
fline optimization process with predictable component performance profiles and fixed

connections among components. One can imagine far more subtle designs in which
individual components must deal with unexpectedly slow or fast progress in processing

and changing needs for information from other components. This might involve ex-
changing computational resources among components, establishing new interfaces, and
so on. This is more reminiscent of a computational market, as envisaged by Wellman
[511, than of the classical subroutine hierarchies, and would offer a useful additional
level of abstraction in system design.

7.2.2. Mechanisms for adaptation
In addition to combinatorial optimization of the structure and temporal behaviour of

an agent, we can also use learning methods to improve the design:
l The content of an agent’s knowledge base can of course be improved by inductive

learning. In [40], it is shown that approximately bounded optimal designs can

be guaranteed with high probability if each component is learned in such a way
that its output quality is close to optimal among all components of a given execu-

tion time. Results from computational learning theory, particularly in the agnostic
learning model [25], can provide learning methods with the required properties.
The k:ey additional step is to analyze the way in which slight imperfection in each
component carries through to slight imperfection in the whole agent.

l Reinfbrcement learning can be used to learn value information such as utility
functions. Recent results [491 provide convergence guarantees for reinforcement
learning with a fairly broad class of function approximators. One can use such
learning methods for metalevel information, e.g., the value of computation. In
[42, (Chapter 61, this is shown to be an effective technique. Formal results on
convergence to optimal control of search would be of great interest. Further work
is needed, however, since current theorems assume a stationary distribution that
generates the agent’s experiences whereas an agent that is improving its search
control will presumably be exploring different populations of experiences over
time.

72 S.J. Russell/Art$cial Intelligence 94 (1997) 57-77

l Compilation methods such as explanation-based learning can be used to transform
an agent’s representations to allow faster decision making. Several agent archi-

tectures including SOAR [28] use compilation to speed up all forms of problem
solving. Some nontrivial results on convergence have been obtained by Tadepalli

[481, based on the observation that after a given amount of experience, novel
problems for which no solution has been stored should be encountered only infre-
quently.

Presumably, an agent architecture can incorporate all these learning mechanisms. One of
the issues to be faced by bounded optimality research is how to prove convergence results
when several adaptation and optimization mechanisms are operating simultaneously. A

“quasistatic” approach, in which one mechanism reaches convergence before the other
method is allowed to take its next step, seems theoretically adequate but not very
practical.

7.2.3. Ofline and online mechanisms

One can distinguish between offline and online mechanisms for constructing bounded-
optimal agents. An offline construction mechanism is not itself part of the agent and
is not the subject of bounded optimality constraints. Let C be an offline mechanism
designed for a class of environments E. Then a typical theorem will say that C operates
in a specific environment E E E and returns an agent design that is ABO (say) for
E-that is, an environment-specific agent.

In the online case, the mechanism C is considered part of the agent. Then a typical
theorem will say that the agent is ABO for all E E E. If the performance measure
used is indifferent to the transient cost of the adaptation or optimization mechanism, the
two types of theorems are essentially the same. On the other hand, if the cost cannot
be ignored-for example, if an agent that learns quickly is to be preferred to an agent

that reaches the same level of performance but learns more slowly-then the analysis
becomes more difficult. It may become necessary to define asymptotic equivalence for
“experience efficiency” in order to obtain robust results, as is done in computational

learning theory.
It is worth noting that one can easily prove the value of “lifelong learning” in the

ABO framework. An agent that devotes a constant fraction of its computational resources
to learning-while-doing cannot do worse, in the ABO sense, than an agent that ceases
learning after some point. If some improvement is still possible, the lifelong learning

agent will always be preferred.

7.2.4. Fixed and variable computation costs

Another dimension of design space emerges when one considers the computational
cost of the “variable part” of the agent design. The design problem is simplified con-
siderably when the cost is fixed. Consider again the task of metalevel reinforcement
learning, and to make things concrete let the metalevel decision be made by a Q func-
tion mapping from computational state and action to value. Suppose further that the
Q function is to be represented by a neural net. If the topology of the neural net is
fixed, then all Q functions in the space have the same execution time. Consequently,
the optimality criterion used by the standard Q-learning process coincides with bounded

S.J. Russell/Arti$cial Intelligence 94 (1997) 57-77 73

optimality, and the equilibrium reached will be a bounded-optimal configuration.5 On
the other hand, if the topology of the network is subject to alteration as the design
space is explored, then the execution time of the different Q-functions varies. In this

case, the standard Q-learning process will not necessarily converge to a bounded-optimal
configuration. A different adaptation mechanism must be found that takes into account

the passage of time and its effect on utility.
Whatever the solution to this problem turns out to be, the important point is that

the notion of bounded optimality helps to distinguish adaptation mechanisms that will

result in good performance from those that will not. Adaptation mechanisms derived
from calculative rationality will fail in the more realistic setting where an agent cannot
afford to aim for perfection.

7.2.5. Fully variable architectures
The discussion so far has been limited to fairly sedate forms of agent architecture

in which the scope for adaptation is circumscribed to particular functional aspects such
as metalevel Q functions. However, an agent must in general deal with an environment

that is far more complex than itself and that exhibits variation over time at all levels of

granularity. Limits on the size of the agent’s memory may imply that almost complete
revision of the agent’s mental structure is needed to achieve high performance. For
example, one can imagine that a simple rule-based agent living through cycles of winter
and summer may have to discard all of its summer rules as winter approaches, and then
relearn them from scratch the following year. Such situations may engender a rethinking
of some of our notions of agent architecture and optimality, and suggest a view of agent
programs as dynamical systems with various amounts of compiled and uncompiled
knowledge and internal processes of inductive learning, forgetting, and compilation.

7.2.6. Towards a grammar of AI systems
The approach that seems to be emerging for bounded optimality research is to divide

up the space of agent designs into “architectural classes” such that in each class the

structural variation is sufficiently limited. Then ABO results can be obtained either
by analytical optimization within the class or by showing that an empirical adaptation
process results in an approximately ABO design. Once this is done, it should be possible

to compare architecture classes directly, perhaps to establish asymptotic dominance of
one class over another. For example, it might be the case that the inclusion of an
appropriate “macro-operator formation” or “greedy me&reasoning” capability in a given
architecture will result in an improvement in behaviour in the limit of very complex
environments-that is, one cannot compensate for the exclusion of the capability by
increasing the machine speed by a constant factor. A central tool in such work will be
the use of “no-cost” results where, for example, the allocation of a constant fraction

of computational resources to learning or metareasoning can do no harm to an agent’s
ABO prospects.

5 A similar observation was made by Horvitz and Brcese 1221 for cases where the object level is so restricted
that the metalevel decision problem can be solved in constant time.

74 S.J. RusseWArt~cial intelligence 94 (1997) 57-77

Getting all these architectural devices to work together smoothly is an important
unsolved problem in AI and must be addressed before we can make progress on un-

derstanding bounded optimality within these more complex architectural classes. If the
notion of “architectural device” can be made sufficiently concrete, then AI may eventu-

ally develop a grammar for agent designs, describing the devices and their interrelations.
As the grammar develops, so should the accompanying ABO dominance results.

8. Summary

I have outlined some directions for formally grounded AI research based on bounded
optimality as the desired property of AI systems. This perspective on AI seems to be
a logical consequence of the inevitable philosophical “move” from optimization over

actions or computations to optimization over programs. I have suggested that such an
approach should allow synergy between theoretical and practical AI research of a kind
not afforded by other formal frameworks. In the same vein, I believe it is a satisfactory
formal counterpart of the informal goal of creating intelligence. In particular, it is entirely
consistent with our intuitions about the need for complex structure in real intelligent
agents, the importance of the resource limitations faced by relatively tiny minds in large
worlds, and the operation of evolution as a design optimization process. One can also
argue that bounded optimality research is likely to satisfy better the needs of those

who wish to emulate human intelligence, because it takes into account the limitations
on computational resources that are presumably responsible for most of the regrettable
deviation from perfect rationality exhibited by humans.

Bounded optimality and its asymptotic cousin are, of course, nothing but formally

defined properties that one may want systems to satisfy. It is too early to tell whether
ABO will do the same kind of work for AI that asymptotic complexity has done
for theoretical computer science. Creativity in design is still the prerogative of AI
researchers. It may, however be possible to systematize the design process somewhat
and to automate the process of adapting a system to its computational resources and
the demands of the environment. The concept of bounded optimality provides a way to
make sure the adaptation process is “correct”.

My hope is that with these kinds of investigations, it will eventually be possible to
develop the conceptual and mathematical tools to answer some basic questions about in-
telligence. For example, why do complex intelligent systems (appear to) have declarative
knowledge structures over which they reason explicitly? This has been a fundamental
assumption that distinguishes AI from other disciplines for agent design, yet the answer
is still unknown. Indeed, Rod Brooks, Hubert Dreyfus, and others flatly deny the as-
sumption. What is clear is that it will need something like a theory of bounded optimal
agent design to answer this question.

Most of the agent design features that I have discussed here, including the use of
declarative knowledge, have been conceived within the standard methodology of “first
build calculatively rational agents and then speed them up”. Yet one can legitimately
doubt that this methodology will enable the AI community to discover all the design
features needed for general intelligence. The reason is that no conceivable computer

S.J. Russell/Artificial Intelligence 94 (1997) 57-77 15

will ever be remotely close to approximating perfect rationality for even moderately
complex environments. Perfect ration~ity is, if you like, a “Newtoni~” definition for
intelligent agents whereas the real world is a particle accelerator. It may well be the
case that agents based on improvements to calculatively rational designs are not even
close to achieving the level of performance that is potentially achievable given the
underlying computational resources. For this reason, I believe it is imperative not to
dismiss ideas for agent designs that do not seem at first glance to fit into the “classical”
calculatively rational framework. Instead, one must attempt to understand the potential of
the bounded optimal configurations within the corresponding architectural class, and to
see if one can design the appropriate adaptation mechanisms that might help in realizing
these configurations.

As mentioned in the previous section, there is also plenty of work to do in the
area of making more general and more robust “bricks” from which to construct AI
systems for more realistic environments, and such work will provide added scope for
the achievement of bounded optimality. In a sense, under this conception AI research is
the same now as it always should have been.

Acknowledgements

An earlier version of this paper appeared in the Proceedings of the Fourteenth Zn-
ternatioml Joint Conference on Artificial Intelligence, published by IJCAII. That paper
drew on previous work with Eric Wefald [42] and Devika Subr~anian [40]. The
latter work contains a more rigorous analysis of many of the concepts presented here.
Thanks allso to Michael Wellman, Michael Fehling, Michael Genesereth, Russ Greiner,
Eric Horvitz, Henry Kautz, Daphne Koller, and Bart Selman for many stimulating dis-
cussions and useful suggestions on the topic of bounded rationality. The research was
supported by NSF grants IRI-8903 146, IRI-921 X512 and IRI-9058427, by a UK SERC
Visiting Fellowship.

References

f 1] PE. Agre and D. Chapman, Pengi: an impIementatio~ of a theory of activity, in: ~rocee~i~~~ IJCAI-87,
Milan, Italy (Morgan Kaufmann, Los Altos, CA, 1987) X8-272.

121 F. Bacchus and A. Grove, Graphical models for preference and utility, in: Proceedings 11th Conference
on Uncertainty in Artijicial Intelligence (UAI-95), Montreal, Que. (Morgan Kaufmann, Los Altos, CA,
1995) 3-10.

[31 J.S. Breese and M.R. Fehling, Control of problem-solving: principles and architecture, in: R.D. Shachter,
T.S. Levitt, L.N. Kanal and J.F. Lemmer, eds., Uncertujn~ in Arf~c~a~ Iafe~~ige~ce, Vol. 4 (North-
Holland, Amsterd~, 1990).

[4] R.A. Brooks, Engineering approach to building complete, intelligent beings, Proceedings SPIE--The
International Societyfor Optical Engineering 1002 (1989) 618-625.

[S] R.A. 13rooks, Intelligence without representation, Artificial Intelligence 47 (1991) 139-159.
[6 J R. Camap, Logical Foundations of Probability (University of Chicago Press,. Chicago, IL, 1950).
[7] A.R. Cassandra, L.P. Kaelbhng and M.L. Littman, Acting optimafly in pattially observable stochastic

domains, in: Proceedings AAAI-94, Seattle, WA (AAAI Press, 1994) 1023-1028.
]8] C. Chemiak, Minimal Rationality (MIT Press, Cambridge, MA, 1986).

76 S.J. Russell/Artificial Intelligence 94 (1997) 57-77

[9] R. Davis, Meta-rules: reasoning about control, Artificial Intelligence 15 (1980) 179-222.

[lo] T.L. Dean, J. Aloimonos and J.F. Allen, Artificial Intelligence: Theory and Practice (Benjamin/

Cummings, Redwood City, CA, 1995).

[111 T.L. Dean and M. Boddy, An analysis of time-dependent planning, in: Proceedings AAAI-88, St. Paul,
MN (Morgan Kaufmann, Los Altos, CA, 1988) 49-54.

[121 T.L. Dean and K. Kanazawa, A model for reasoning about persistence and causation, Comput. Intell. 5
(1989) 142-150.

[131 DC. Dennett, The moral first aid manual, Tanner Lectures on Human Values, University of Michigan,

Ann Arbor, MI (1986).

[141 J. Doyle and R.S. Patil, Two theses of knowledge representation: Language restrictions, taxonomic
classification and the utility of representation services, Art&ial Intelligence 48 (1991) 261-297.

[151 E. Ephrati and J.S. Rosenschein, The Clarke tax as a consensus mechanism among automated agents, in:

Proceedings AAAI-91, Vol. 1, Anaheim, CA (AAAI Press, 1991) 173-178.

[161 J. Forbes, T. Huang, K. Kanazawa and S.J. Russell, The BATmobile: towards a Bayesian automated

taxi, in: Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995).

[171 M.L. Ginsberg and D.F. Geddis, Is there any need for domain-dependent control information?, in:

Proceedings AAAI-91, Vol. 1, Anaheim, CA (AAAI Press, 1991) 452-457.

[181 I.J. Good, Twenty-seven principles of rationality, in: VP Godambe and D.A. Sprott, eds., Foundations
of Statistical Inference (Holt, Rinehart and Winston, Toronto, Ont., 1971) 1088141.

[191 G.H. Harman, Change in View: Prmciples of Reasoning (MIT Press, Cambridge, MA, 1983).

[20] E.J. Horvitz, Problem-solving design: reasoning about computational value, trade-offs and resources, in:
Proceedings 2nd Annual NASA Research Forum, Moffett Field, CA (NASA Ames Research Center,

1987) 26-43.

1211 E.J. Horvitz, Reasoning about beliefs and actions under computational resource constraints, in: L.N.

Kanal, T.S. Levitt and J.F. Lemmer, eds., Uncertainty in Art$cial Intelligence, Vol. 3 (North-Holland,

Amsterdam, 1989) 301-324.

[221 E.J. Horvitz and J.S. Breese, Ideal partition of resources for metamasoning, Technical Report KSL-90-26,

Knowledge Systems Laboratory, Stanford University, Stanford, CA (1990).

[23] R.A. Howard, Information value theory, IEEE Trans. Systems Sci. Cybernet. 2 (1966) 22-26.
[241 R.E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Engineering (March

1960) 35-46.

[25] M. Keams, R. Schapire and L. Sellie, Toward efficient agnostic learning, in: Proceedings 5th Annual
ACM Workshop on Computational Learning Theory (COLT-92). Pittsburgh, PA (ACM Press, New York,

1992).

[261 R.L. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs (Wiley,

New York, 1976).

[27] P.R. Kumar and l? Varaiya, Stochastic Systems: Estimation, Identification and Adaptive Control (Prentice-

Hall, Englewood Cliffs, NJ, 1986).

[28] J.E. Laird, P.S. Rosenbloom and A. Newell, Chunking in Soar: the anatomy of a general learning

mechanism, Machine Learning 1 (1986) 1 l-46.

[29] S.L. Lauritzen, The EM algorithm for graphical association models with missing data, Comput. Statist
Data Analysis 19 (1995) 191-201.

[30] H.J. Levesque, Making believers out of computers, Arttftcial Intelligence 30 (1986) 81-108.
[31] H.J. Levesque and R.J. Brachman, Expressiveness and tractability in knowledge representation and

reasoning, Comput. Intell. 3 (1987) 78-93.
[321 J.E. Matheson, The economic value of analysis and computation, IEEE Trans. Sysfems Sci. Cybernet 4

(1968) 325-332.
[33] N. Megiddo and A. Wigderson, On play by means of computing machines, in: J.Y. Halpem,

ed., Theoretical Aspects of Reasoning about Knowledge: Proceedings 1986 Conference (TARK-86),
Monterey, CA (Morgan Kaufmann, Los Altos, CA, 1986) 259-274.

[341 S. Minton, Is there any need for domain-dependent control information? A reply, in: Proceedings AAAI-
96, Vol. 1, Portland, OR (AAAI Press, 1996) 855-862.

[35] A. Newell, The knowledge level, Arti$cial Intelligence 18 (1982) 82-127.

S.J. RusseWArtijcial Intelligence 94 (1997) 57-77 71

[36] C.H. Papadimitriou and M. Yannakakis, On complexity as bounded rationality, in: Proceedings
Symposium on Theory of Computation (STOC-94) (1994).

[371 R. Parr and S.J. Russell, Approximating optimal policies for partially observable stochastic domains, in:

Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995).

[38] S.J. Russell, J. Binder, D. Keller and K. Kanazawa, Local learning in probabilistic networks with

hidden variables, in: Proceedings IJCAI-95, Montreal, Que. (Morgan Kaufmann, Los Altos, CA, 1995)

11466;’ 152.

[391 S.J. Russell and P Norvig, Artificial Intelligence: A Modern Approach (Prentice-Hall, Englewood Cliffs,

NJ, 19’95).
[40] S.J. Russell and D. Subramanian, Provably bounded-optimal agents, J. Art$ Intell. Research 3 (1995).
[411 S.J. Russell and E.H. Wefald, On optimal game-tree search using rational meta-reasoning, in: Proceedings

IJCALS9, Detroit, MI (Morgan Kaufmann, Los Altos, CA, 1989) 334-340.

[421 S.J. Russell and E.H. Wefald, Do the Right Thing: Studies in Limited Rationality (MIT Press, Cambridge,

MA, 1991).

[43] S.J. Russell and E.H. Wefald, Principles of me&reasoning, Artijcial Intelligence 49 (1991) 361-395.
[44] S. Russell and S. Zilberstein, Composing real-time systems, in: Proceedings IJCAI-9I, Sydney, Australia

(Morgan Kaufmann, Los Altos, CA, 1989).

[45] H.A. Simon, A behavioral model of rational choice, Quart. J. Economics 69 (1955) 99-118.

1461 H.A. Simon, Rational choice and the structure of the environment, in: Models of Rounded Rationality,
Vol. 2 (MIT Press, Cambridge, MA, 1958).

[47] E.J. Sondik, The optimal control of partially observable Markov decision processes, Ph.D. Thesis,

Stanford University, Stanford, CA (197 1)

[48] P Tadepalli, A formalization of explanation-based macro-operator learning, in: Proceedings IJCAI-91,
Sydney, Australia (Morgan Kaufmann, Los Altos, CA, 1991) 616-622.

[49] J.N. Tsitsiklis and B. Van Roy, An analysis of temporal-difference learning with function approximation,

Technical Report LIDS-P-2322, Laboratory for Information and Decision Systems, MIT, Cambridge,

MA (1996).

[50] M.P. Wellman, Reasoning about preference models, Technical Report MIT/LCS/TR-340, Laboratory

for Computer Science, MIT, Cambridge, MA (1985).
[51] M.P. Wellman, A market-oriented programming environment and its application to distributed

multicommodity flow problems, J. Artif: Intell. Research 1 (1994) l-23.

[52] S. Zilberstein and S.J. Russell, Optimal composition of real-time systems, Artiftcial Intelligence 82
(1996) 181-213.

